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Abstract

Knowing the elements of capacitance matricea for coupled microstrip linea, we are able to obtain the charac-
teristics of coupled or meander lines by application of a matrix theory. The elements of the capacitance matri-

cea previously computed from geometrical dimensions of the lines can now be obtained directly by analytical formu-
las in a large domain of valuea of ~, a, h and e

r“

The determination of all the parameters of a

shielded or non-shielded microatrip coupler, in symme-
trical position, is the subject of many papers. Some

problems have not been solved, like the matching condi-

tions, and the calculation of parameter taking into
account the divergence between the velocities of the

various eigen modes of propagation. This paper is based
on Ref. 1.

Matrix formulation

Let ua consider a aet of n shielded microstrip
coupled lines, supported by a dielectric substrate
(Fig. 1), Suppose that the principal mode of propaga-
tion ia a quaai T.E,M. mode. Let oz be the axia of
propagation parallel to the lines, When potentiala

:1 ‘ ‘2’ ““”
Vn are applied to the ports z = O, currents

~, I , . . . In flow in the lines. We can write the
equat?ona of propagation in a matrix formaliam where

V(z) and ~(z) are column vectors.

‘{(4”+:s0(2)=0
dz

(

2
~U+w2MS

)
7(Z) = o

dz

(1)

~ is the frequency of the incident wave. In these
expresaiona are introduced the matricea (S), (M) and

(u) , The latter one is the unit matrix. The firat
ones are important characteristic matrices: (S) is
the matrix of aelf and mutual capacitance, ita elements
can be easily computed from an acceler ted finite dif-

9
ferencea method previously established . (M) ia the
correspondent matrix of self and mutual admittance.
We can also compute all ita elements from

(M) = (1/C2)(So)-1 where C and (S.) are the velocity
of light and the matrix (S) in vacuum. We showl that
the eigen valuea of the matrix product (G) = (S) (M)
are related to the phase velocities of the modes of

propagation. Having n lines, there are n eigen valuea

ai, and ao n velocities of propagation vi since

‘i = ll~C?i . For each ~i, corresponding eigen modes
of propagation can be calculated, so it ia poaaible

to calculate the valuea in voltage and current which
must be applied respectively on the N input ports to
excite our eigen wave traveling through the device,
For a two linea symmetrical coupler theee voltages
or currents excite the well known even and odd modes.

Then we can obtain other matricea as the characteristic
impedance matrix (Zc) by:

(Zc) (S) (Zc) = (M) (2)

as the input impedance matrix (Z. ) defined by
~(o) = (Zin) ~(o) and aa the wel~nknown scattering

matrix of the circuit, Then these matrices are also
eaaily computed from the important matrix (S): this
computation taking into account the divergence of the
velocities of propagation and the frequency.

Matching conditions and couplers

If n coupled lines are loaded by impedance Z. at

each port, then the boundary cOnditiOns can be
expressed aa T(o) = Vo(o) - Zo~(0) with Vi(O) = ZOI1(0)
and fi(,f,) = Z. T(L). For matching, the load impedance

20 should be the solution of:

( )
det (Zin) - ZO(D) = O (3)

Aaymm etrical and symmetrical couplers app licationa

First we give some results on velocities of
propagation, characteristic matrix, matching impedance
with respect to frequency and asymmetry. The geomet-
rical dimensions of the studied coupler follow:

(Fig.1) A= 32mm; B=3.7mm; w=2.2 mm; S=O.8nmI

All the studied couplers are supported by teflon

(er = 2.65) as dielectric substrate. The length of the
lines are calculated in such a way that the coupling

factor is maxima at 1.5 GHz,

Capacitances and inductances

The upper theory has given the matrices of
capacitance (S) and (M):

[

Self capacitance: C1=l.046 10
-lOF

K/K /=1
C2=1.046 10-lOF

Mutual capacitances:
’12

=-0.737 10-lOF

( Szl
‘-0.737 10-lOF

~elf capacitancea: Cl=l.24710-10F

,

I

C2=9.99 10-llF
K/K’=0.29

Mutual capacitances: S
12

=-0.720 10-lOF

s 21~-0.720 10-lOF

Likewise, we have the matrices of inductances (M):

(Self inductance: L1 = 2,82 10-7H
,

j L2 = 2.82 10-7H
K/K ‘=1

1.

Mutual inductances: M12 = 1.466 10-7H

‘21
= 1.466 10-7H

(

Self inductances: L1 = 2,48 10-7H

)
‘2

~ 1.902 10-7H

K/K’=0.29
‘l Mutual inductances: M12 = 1.052 10-7H

L ‘21
= 1.052 10-7H
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Velocities
The phase velocities are now calculated from these

matrices. We obtain:

1[11 2.74 108

2.65 0.8 2.75 108

0.29 2.76 108

v m/s

o

3.108

2.03 108

2.03 108

2.04 108

Meander lines app 1 icat ion

Ei.zen values for three lines
It is not right to consider one wave number 8

instead of the three possible values @i before having

calculated and compared them. We have calculated the
~i for varioua configurstiona of three lines of equal

width regularly spaced using an accelerated over-rela-
xation method to determine (S)l. We recall that
~i =wJai. For instance we obtain al=0.3220 x 10-16,

Q1l= 0.5061 X 10-16, Q111=0.5590 x 1o-16. In a first

apprOach We can use a mean value ~ of the ai, with the
corresponding value ~=j~
Parameters of a meander line with N-1 meanders

As long ss the previous approximation remains
valid for a delay line having N-1 meanders corresponding
to N coupled lines we obtain:

[1(v(o) ,[ ~a(Zc) b(Zc)–~ ‘~(0)
;= (4)

lv(z,)~ L-b(zc) -a(zc)J ~I($)J ““
with a = coth~, b = -(1/ShyL). Adjoining limit condi-
tions between the variables, the 2 x N port system

reduces to s two port system having an impedance matrix:

LB ~.~

Then we have the scattering matrix:

x= ((z) - Zo(u))((z) +zo(u) )-’

~=[”s11 ‘lo 1,

](

: input

, ho ‘II
o : output )

and we obtain a matching condition for a delay line,
22 c A2 _ B2. The useful psrametera : phase delay and
g?oup delay, are obtained from the amplitude and phase
of s 10, knowing that :

1

‘IO =
A/B + (A/B2 - 1)%

Algorithm of calculation for an example with

two meanders (three lines)

Mere the limit

\v2(~) = v@

iv (o) = V2(0)
[3

I

(Zc) = ~

conditions are:

!’12(L) = - 11(1)]

~ 13(0) -- - 12(0)~ (6)
~

-i

’11 ’12 ’13

’12 ’22 ’12

z
’13 12 ’11 .

If ~l=zll-z12; 62=212-222; 63=Z13-’Z12; 64=61-62

65=62-63

Applying the limit conditions (6) it cornea:

Ii(L)=-~11(0)-B13(L); 12(0)=P11(0)W13(L) (7)

ab(6164+6365) a26364+b26165

~=a262 B=22

4
- b26: a64- b26:

Then the (Z) matrix of the two-port 1,0 - 3,4 is
obtsined applying convenient parts of (4):

VI(0) = (Z11Z12Z13) (al(o) + b ~(.f,)) (8)

V3(L) =-(Z13Z12Z1/ (by(o) + a ~(1.)) (9)

Eliminating the intermediate variables II(J) and

12(0) from (7), (8), and (9) give:

1.V3(L)

with 1~(-/,)

and

aIO

a 10

the

‘[
A=

-B =

:1IIE’? (lo)

-13(L) (b-== the orientations)

(211 - 1363) a - C161 (b)

Q 63a + (Z13 - B61) b

The phase and group delay will be obtained from
with :

(Zll - D63) ahy4. + CYbl
A/B =

Q 63chYL + 213 - R61

The calculations will be then purely numerical,
being written :

SIO= lslo\ejo

@lgroup delay is obtsined SS : T = - d,,
m

The attenuation is given by IsIol

If we consider an “ideal ,, meander line with lines

Of length ~/4 it cOmes fOr the matching conditi(~n:

z2=~
[

2

’13 - 2D 61 213 - 6; (Q2 -0 P2)]

For a line with three meanders or more the algo-
rithm of calculation will be the same, if it is possible
to take the same velocities on the lines without a too
important error.

Calculation of the matrix (S)

We have seen that all the parameters of microstrip
lines or couplers can be calculated from the matrix (S)

for a non-magnetic substrate. Up to now, capacitance

were computed by different numerical methods and not

very easy to use. So we have to try to obtain analy-

tical expressions for capacitances, impedances, effec-
tive dielectric constanb, coupling coefficient which
only depend on e , w/h and slh. These expressions are

usable for all tfie positive val. uea of these parameter,
but they were obtained from computing results for

l<er S1.OO. 0.04sw/hSIO for single lines and for
0.03 .S slh s 5 for coupled lines.

Firstly we have studied the single inhomogeneous
microstrip lirLe. Fixing wfh, we have calculated the

capacitances with several values of ~r between 1 and 100.
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plotting the capacitance in terms of er we have

obtained a straight line for all w/h, The effect
of the parameter ~ on the capacitance being known,

we have fixed ~r a~d plotted the slope of straight

lines above mentioned in terms of wlh; we have

obtained a curve having an oblique asymptotic direc-

tion for great values of w/h. This is physically cor-

rect because when w/h becomes very great, the capaci-
tance tenda to the one of a perfect plane capacitor,

the capacitance of which being a linear function of
w/h. Having the valuea of the slope for small values
of w/h (0.04 s w/h s l), we can join this part to the
quasi linear one for greater values of w/h (w/h > 2)
by using a 111east squares method. ” So we have the
capacitance for a single inhomogeneous microstrip line
in terms of ~r, w/h and Co, the capacitance of the line
for an homogeneous structure. By a conformal mapping
method, it is possible to calculate this capacitance

only in terms of go and w/h. Then the final result is

that we have a formula giving the capacitance for all

the possible configuration.

For the coupled lines, we obtain alao a linear

variation of the capacitances for odd and even modes
with the dielectric constant ~r. The alopes of these
straight lines sre on both sidea of the slope of the
single microstrip line having the same w/h and tenda
to this one when s/h increases.

Using the aelf and mutual capacitance which are
the sum and difference of the odd and even mode capa-

citance we have studied their variationa with the
different geometrical parameters of the line, Fixing

firstly s/h, we have obtained the epxreaaiOns Of self

capacitances by reasoning and calculations identical

with those used for the single line. Mutual capaci-

tances are also obtained but they are more easily

reached by fixing w/h and varying s/h. In each case,

if one of the parameter ia fixed we obtained the
numerical coefficients of the analytical expression
of the capacitance in terms of this fixed coefficient.
So by varying this one, we obtained a set of valuea

which can be joined one to each other by using a “least
square method.’t

The result ia that we give analytical formulas
giving aelf and mutual capacitance or odd and even

modes capacitances in terms of er, Wlh, afh and Coo
or Coe, the odd and even capacitances for homogeneous

medium. By a conformal mapping method, we can try to
calculate these values and ao, the capacitances would

only depend on co, ~r, w/h and s/h.

This result ia very important because it makes
unusable very long and expanaive computing calcula-

tions to obtain impedances (odd and even mode) coupling
coefficient, adaptation, etc. . . for microstrip couplers,
phaae displacement or group delay for meander lines for

exampl. e.
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