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Abstract

Knowing the elements of capacitance matrices for coupled microstrip lines, we are able to obtain the charac-

teristics of coupled or meander lines by application of a matrix theory.

The elements of the capacitances matri-

ces previously computed from geometrical dimensions of the lines can now be obtained directly by analytical formu-

las in a large domain of values of y, s, h and €L
Introduction

The determination of all the parameters of a
shielded or non-shielded microstrip coupler, in symme-
trical position, is the subject of many papers. Some
problems have not been solved, like the matching condi-
tions, and the calculation of parameters taking into
account the divergence between the velocities of the
various eigen modes of propagation. This paper is based
on Ref. 1.

Matrix formulation

Let us consider a set of n shielded microstrip
coupled lines, supported by a dielectric substrate
(Fig. 1). Suppose that the principal mode of propaga-
tion is a quasi T.E.,M., mode. Let oz be the axis of
propagation parallel to the lines. When potentials
Vl’ V2, . V_ are applied to the ports z = 0, currents
I, I, ... I flow in the lines. We can write the
equations of propagation in a matrix formalism where
V(z) and T(z) are column vectors.

2
< d2 U+ su ) T(z) = 0
dz (1
( ;92 U+ o MS > T(z) = 0
z

w is the frequency of the incident wave. 1In these
expressions are introduced the matrices (S), (M) and
(U). The latter one is the unit matrix. The first
ones are important characteristic matrices: (S) is
the matrix of self and mutual capacitances, its elements
can be easily computed from an accelerated finite dif-
ferences methed previously established”. (M) is the
correspondant matrix of self and mutual admittances.
We can also compute all its elements from
™M) = (I/CZ)(SO)'1 where C and (S,) are the velocity
of light and the matrix (S) in vacuum., We show! that
the eigen values of the matrix product (G) = (S) (M)
are related to the phase velocities of the modes of
propagation. Having n lines, there are n eigen values
@5, and so n velocities of propagation vy since
vy = 1/ /@3 . For each wj, corresponding eigen modes
of propagation can be calculated, so it is possible
to calculate the values in voltage and current which
must be applied respectively on the N input ports to
excite our eigen wave travelling through the device.
For a two lines symmetrical coupler these voltages
or currents excite the well known even and odd modes.
Then we can obtain other matrices as the characteristic
impedance matrix (Z.) by:
(z) () (2)) = (D 2)
as the input impedance matrix (Z.n) defined by
V(o) = (Z,) T(o) and as the well™known scattering
matrizx of the circuit., Then these matrices are also
easily computed from the important matrix (8): this
computation taking into account the divergence of the
velocities of propagation and the frequency.
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Matching conditions and couplers

If n coupled lines are loaded by impedance Z, at
each port, then the boundary conditions can be
expressed as Vio) = Vo(o) - ZOT(O) with Vy (o) = Zoll(o)
and V(1) = Z5 I(1). For matching, the load impedance

Z, should be the solution of:

det <(Zin) - ZO(D)> =0 (3)

Asymmetrical and symmetrical couplers applications

First we give some results on velocities of
propagation, characteristic matrix, matching impedance
with respect to frequency and asymmetry. The geomet-
rical dimensions of the studied coupler follow:
(Fig. 1) A =32 mm; B= 3,7 mm; W= 2.2 mm; S =
All the studied couplers are supported by teflon
(er = 2.65) as dielectric substrate. The length of the
lines are calculated in such a way that the coupling
factor is maxima at 1.5 GHz. :
Capacitances and inductances

The upper theory has given the matrices of
capacitances (S) and (M):

0.8 mm,

Self capacitances: C;=1.046 107 %
_ ~-10
R/K /=1 02—1.046 10 °°F
Mutual capacitances: 812=-0.737 10_1OF
. -10
L 821 0.737 10 °°F
féelf capacitances: Cl=1.247 10-10F
g -11
C2ﬂ9.99 10 °°F
K/K’=0.29 10
Mutual capacitances: SIZ:—0.720 10 °°F
-10
8217—0.720 10 F
Likewise, we have the matrices of inductances (M):
(Self inductances: L1 = 2,82 10_7H
i
; L, = 2,82 1071
K/K’=1 -7
Mutual inductances: M12 = 1.466 10 'H
-7
M21 = 1.466 10 'H
(Self inductances: L, = 2.48 107 'n
L, = 1.902 10771
K/K’=O.29) -7
‘Mutual inductances: M12 = 1,052 10 H
: _ -7
| M,y = 1.052 10 'H



Velocities
The phase velocities are now calculated from these
matrices. We obtain:
/ /
e, K/K vy m/s v, m/s
1 1| 3.108 3.10%
1 | 2.74 108 | 2.03 10%
2,65/| 0.8 | 2.75 108 2.03 108
0.29} 2.76 108 2,04 108

Meander lines application

Eigen values for three lines

It is not right to consider one wave number §
instead of the three possible values g; before having
calculated and compared them. We have calculated the
@i for various configurations of three 'ines of equal
width regularly spaced using an accelerated over-rela-
xation method to determine (S) We recall that
Bi =w/ @;. For ingfance we obtain @1=0.3220 x 10-16
apr= 0.5061 x 107°°, @11=0.5590 x 1016, 1In a first
approach we can use a mean value o of the i, with the
corresponding value y=jg
Parameters of a meander line with N-1 meanders

As long as the previous approximation remains
valid for a delay line having N-1 meanders corresponding
to N coupled lines we obtain:

v(of] a(z) b)) 1(057 “
r )
V(L)J jb(Zc) —a(ZC)- IC&)J
with a = cothyb, b = -(1/Shyg). Adjoining limit condi-

tions between the variables, the 2 x N port system
reduces to a two port system having an impedance matrix:

B )

(z) = |
Al

A
B (5)

PR

Then we have the scattering matrix:

z= (@ - z,m) @ +z, )"

Slo—] -
<O :

°11
and we_obtain a matching condition for a delay line,
Z = A" - B The useful parameters : phase delay and
group delay, are obtained from the amplitude and phase

of 81q° knowing that :

input >
output

1
A/B + (A/B2

s
L
I0 _ 1)2
Algorithm of calculation for an example with
two meanders (three lines)

Here the limit conditions are:

v, = v1(43’ ?12({) = - Il<{)1
W3(0> = V,(0) LI3(0)\'- I (0>: (6)
; 21y Zip B3
2 = i “12 %9y %12
L3 %12 "1
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LE §1=Zq7 25 8972197799t 83721372195 8,76178;

8578783
Applying the limit conditions (6) it comes:

1, @)=l  (0)-I5(t); I,(0)=8T; (0)+¥T,(2) )
2 2
_ab(6164+6365) 2 646,169 85
=237 72 22 217
a’ g, 85 a g, 85

Then the (Z) matrix of the two-port 1,0 - 3,{ is
obtained applying convenient parts of (4):

(8)
®

y (aL(0) + b T(x))

17 (bI(0) + a T())

Vl(O) = (Z

v (&)

11%12%13
= (214257

Eliminating the intermediate variables I (L) and
1 (0) from (7), (8), and (9) give:

v (05] B 1,(0)
(10)
v @)J 1)
with I C@) = 13(¢) (because the orientations)
A= (2 - Bo3) @ - aby (B)
and :
“B = - §qa + (213 - 551) b
The phase and group delay will be obtained from
s with :
10
/b - (Zy1 - Bbg) ah¥e + a8y
The calculations will be then purely numerical,
$10 being written :
- i¢
1o = Isp0le
the group delay is obtained as : 1 = - g%

The attenuation is given by \SIO\

If we consider an "ideal" meander line with lines
of length j/4 it comes for the matching condition:

2 1 2 2 2 2
Zo =5 [y -2 8y 237 by (& - B )]

For a line with three meanders or more the algo-
rithm of calculation will be the same, if it is possible
to take the same velocities on the lines without a too
important error.

Calculation of the matrix (S)

We have seen that all the parameters of microstrip
lines or couplers can be calculated from the matrix (8)
for a non-magnetic substrate. Up to now, capacitances
were computed by different numerical methods and not
very easy to use, So we have to try to obtain analy-
tical expressions for capacitances, impedances, effec-
tive dielectric constant, coupling coefficient which
only depend on e¢_, w/h and s/h. These expressions are
usable for all the positive values of these parameters,
but they were obtained from computing results for
lse £100- 0.04sw/h<10 for single lines and for
0.03%< s/h < 5 for coupled lines.

Firstly we have studied the
microstrip line. Fixing w/h, we
capacitances with several values

single inhomogeneous
have calculated the
of ¢, between 1 and 100.



Plotting the capacitance in terms of ¢ we have r
obtained a straight line for all w/h. TThe effect
of the parameter ¢_ on the capacitance being known,
we have fixed er ahd plotted the slope of straight K
lines above mentioned in terms of w/h; we have
obtained a curve having an oblique assymptotic direc- €0 = W A
tion for great values of w/h. This is physically cor-
rect because when w/h becomes very great, the capaci- /ﬂ /ﬂ /ﬂ
tance tends to the one of a perfect plane capacitor, ) !
the capacitance of which being a linear function of
w/h. Having the values of the slope for small values €obn
of w/h (0.04 < w/h < 1), we can join this part to the
quasi linear one for greater values of w/h (w/h > 2) €0
by using a "least squares method." So we have the
capacitance for a single inhomogeneous microstrip line Fig. 1 Geometrical arrangement of a
in terms of ¢ _, w/h and C_, the capacitance of the line n multilines coupler.
for an homogeneous structure. By a conformal mapping
method, it is possible to calculate this capacitance
only in terms of ¢ and w/h. Then the final result is
that we have a formula giving the capacitance for all
the possible configurations.

For the coupled lines, we obtain also a linear
variation of the capacitances for odd and even modes
with the dielectric constant ¢_. The slopes of these
straight lines are on both sides of the slope of the
single microstrip line having the same w/h and tends
to this one when s/h increases.

Using the self and mutual capacitances which are
the sum and difference of the odd and even mode capa-
citance we have studied their variations with the
different geometrical parameters of the line. Fixing
firstly s/h, we have obtained the epxressions of self
capacitances by reasoning and calculations identical
with those used for the single line. Mutual capaci-
tances are also obtained but they are more easily
reached by fixing w/h and varying s/h. In each case,
if one of the parameters is fixed we obtained the
numerical coefficients of the analytical expression
of the capacitance in terms of this fixed coefficient.
So by varying this one, we obtained a set of values
which can be joined one to each other by using a '"least
square method."

The result is that we give analytical formulas
giving self and mutual capacitances or odd and even
modes capacitances in terms of ¢, w/h, s/h and Coo
ot Cue, the odd and even capacitances for homogeneous
medium. By a conformal mapping method, we can try to
calculate these values and so, the capacitances would
only depend on ¢, 6.5 w/h and s/h.

This result is very important because it makes
unusable very long and expansive computing calcula-
tions to obtain impedances (odd and even mode) coupling

v{o) vo(0) V(0

coefficient, adaptation, etc... for microstrip couplers,
phase displacement or group delay for meander lines for
example.
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